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We study an interfacial instability in the coupled flow of ice and subglacial sediment,
both modelled as viscous media. Unlike other interfacial instabilities in coupled viscous
flows at zero Reynolds number, the mechanism considered here does not rely on buoy-
ancy or the effect of an upper free surface, but on the pressure-dependence of the sedi-
ment viscosity. Specifically, the instability relies on sediment rheology being such that,
when sediment flows in simple shear, sediment flux increases with compressive normal
stress at the ice–sediment interface when the velocity of the interface is kept constant.
When ice moves over a shallow bump in the interface, it generates a higher compressive
stress on the bump’s upstream side than in its lee. If in addition the effective sediment
viscosity is low compared with that of ice, interfacial velocity remains approximately
constant, and this then implies that more sediment flows into the bump than out of
it, causing it to grow. Modelling ice as a Newtonian material, we show that this mech-
anism works for a wide range of sediment rheologies, including the highly nonlinear
shear-thinning ones typically thought most appropriate for the description of ‘nearly
plastic’ sediment. The instabilities predicted are essentially two-dimensional, with infin-
ite transverse wavelength, and a nonlinear model shows that growth is unbounded un-
til cavitation occurs in the lee of evolving bumps on the interface. The instability mech-
anism does not seem to predict the formation of common glacial landforms, but may
explain the formation of water-filled cavities on deformable glacier beds.

1. Introduction
Glaciers and ice sheets are often underlain by deformable sediments known as

till. Interactions between glacier ice and these sediments can play an important role
in glacier sliding (Blankenship et al. 1986), in the subglacial drainage of meltwater
(Walder & Fowler 1994), and in shaping glacial landscapes. The purpose of this paper
is to examine an interfacial instability in the coupled flow of ice and sediment first
proposed by Hindmarsh (1998) and Fowler (2000, 2001). Their primary aim was to
describe a mechanism for the formation of certain patterned glacial landforms known
as drumlins (see figure 1), which Fowler viewed as subglacial analogues of dunes in
deserts and on river beds. The underlying mechanism may be of wider interest in the
study of complex fluids because it is caused by the viscosity of the modelled sub-
glacial sediment layer being pressure-dependent.

Hindmarsh and Fowler’s instability mechanism may be paraphrased as follows: for a
certain class of sediment rheologies with pressure-dependent viscosities, sediment flux
increases when compressive normal stress at the top of a thin sediment layer increases
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Figure 1. Digital elevation model of the Puget Sound drumlin field (Washington State, USA),
image courtesy of Ralph Haugerud, US Geological Survey. Shown is a 6 × 6 km2 section of
the southern Puget Sound, with a quasi-regular pattern of glacial bedforms clearly visible.
The typical height of a drumlin in this area is around 15 m. Drumlins form part of a wider
spectrum of subglacial bedforms, which also includes transverse Rogen moraine ridges and
highly elongated megaflutes (see Aario 1987).

while its surface velocity is kept constant. When ice flows over a shallow bump in the
ice–till interface, it exerts higher compressive normal stresses on the upstream side of
the bump than on its downstream side. If the viscosity of ice is also much greater than
that of till, the till surface velocity remains approximately constant, and combined
with the assumed rheological properties of the till, this implies that more sediment
flows into the bump than out of it. In turn, this causes the bump to grow. This
mechanism differs from those driving better known interfacial instabilities in shearing
flows at zero Reynolds number, which usually rely on buoyancy or the presence of
an upper free boundary (e.g. Kao 1968; Balmforth, Craster & Toniolo 2003), through
its reliance on a pressure-dependent viscosity. Notably, the instability occurs even
though the lower fluid (sediment) has a greater density than the upper fluid (ice), and
the upper fluid can have infinite thickness.

Hindmarsh and Fowler’s analysis was restricted to demonstrating the existence of a
linear instability in two dimensions (whereas drumlins are clearly three-dimensional),
and they were unable to make statements about the nonlinear evolution of the instabil-
ity and the shape of the fully evolved interface. The present paper is aimed at filling
some of these gaps in their theory. We do not, however, assume that the mechanism be-
ing studied is involved in drumlin formation. As we shall see, Hindmarsh and Fowler’s
theory does not reproduce a number of known features of drumlins and similar subgla-
cial landforms (for instance, their three-dimensional shape), but could instead account
for the formation of cavities on deformable glacier beds. These have been observed
under the Antarctic sheet (http://www.jpl.nasa.gov/releases/2001/borehole.html),
and may play an important role in subglacial drainage and the generation of so-called
glacier surges (Fowler 1989; Greenberg & Shyong 1990).

A key assumption in Hindmarsh and Fowler’s work is that deformable subglacial
sediment can be modelled as an incompressible viscous medium with a pressure-
dependent viscosity (strictly, viscosity is assumed to depend on effective pressure,
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the difference between confining pressure and pore pressure in the sediment, with
the latter being prescribed in the model). The use of viscous rheologies to describe the
deformation of till has engendered a heated debate in glaciology because, as granular
media, these sediments may be expected to deform plastically (Kamb 1991; Iverson
& Iverson 2001; Fowler 2003). Evidence from laboratory ring-shear tests (Iverson
et al. 1999; Tulaczyk 1999) largely supports the view that tills can be idealized as
plastic materials, but also indicates that at least some tills retain a slight dependence
of shear stress on strain rate (see also Kamb 2001) and that certain highly nonlinear
shear-thinning rheologies are appropriate models for the flow of these tills.

Moreover, as Fowler (2002) points out, laboratory tests fail to reproduce subglacial
conditions as larger grains have to be removed from tills prior to testing in ring-shear
devices, so this does not yield conclusive evidence as to the behaviour of sediment
found at the base of a glacier or ice sheet. Moreover, till shearing in laboratory tests is
usually confined to a narrow band in the centre of the sample, while in situ samples of
subglacial sediments often show evidence of distributed shearing (Boulton & Dobbie
1998). A number of papers (Tulaczyk 1999; Tulaczyk, Kamb & Engelhardt 2000;
Iverson & Iverson 2001) have attempted to reconcile this observation with a plastic till
rheology; as Fowler (2002) points out, one of them (Iverson & Iverson 2001) explains
distributed shear by effectively fashioning a ‘viscous’ description of till deformation
as a result of randomly distributed Coulomb slip events at depth in the till.

Here we persist with Hindmarsh and Fowler’s pressure-dependent viscous till, pay-
ing attention to highly nonlinear, ‘nearly plastic’ rheologies. Dell’Isola & Hutter (1998)
have developed a more elaborate, thermodynamically motivated description of viscous
till deformation than that used by Hindmarsh and Fowler. The difference between the
two is primarily that the constitutive variable controlling till viscosity in dell’Isola
& Hutter’s paper is porosity, not effective pressure. In the Appendix, we sketch how
Hindmarsh and Fowler’s simpler model can – after some minor alterations – be derived
as a special case of dell’Isola & Hutter’s in which only small porosity variations are
possible (that is, when an appropriate ‘compressibility’ for the till is small).

2. The model
Subglacial sediments are granular materials which, when not frozen to the base of a

glacier or ice sheet, are usually saturated with liquid water as the pore fluid. We follow
Hindmarsh (1998) and Fowler (2000, 2001) in assuming that the pore water does not
support significant deviatoric stresses, and that the total stress σ supported by the
till–water mixture can be partitioned between a porewater pressure pw and an effective
stress σ e (see also the Appendix):

σij = σ e
ij − pwδij , pe = −σ e

ii

/
3, (2.1)

where the effective pressure pe is the isotropic pressure supported by the till matrix
(i.e. the aggregate of till grains), δij is the Kronecker delta and the summation
convention is applied. We also assume that the till matrix behaves as an incompressible
viscous material with constant porosity φ. (In the more general framework developed
by dell’Isola & Hutter (1998),we are considering the case of a low ‘compressibility’,
see the Appendix). Strain rate D is defined in terms of the velocity field u in the usual
way, Dij = (∂ui/∂xj + ∂uj/∂xi)/2, while deviatoric stress is τij = σ e

ij + peδij , and we
assume that the constitutive relation for till is of the form

D = F (τ, pe)τ/τ, (2.2)
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Figure 2. Geometry of the problem.

where τ is the second invariant of deviatoric stress, τ = (τij τij /2)1/2. The function F

must satisfy F (0, pe) = 0 as well as

∂F

∂τ
> 0,

∂F

∂pe

< 0, (2.3)

so till deforms faster under greater applied shear stress and more slowly at higher
effective pressure, when till grains are pressed together harder. In addition, we restrict
ourselves to pe � 0 as negative effective pressure corresponds to the disaggregation
of the till matrix. The power law (Boulton & Hindmarsh 1987)

F (τ, pe) = K
τm

pn
e

(2.4)

will be used as a specific example of a rheology which reproduces the ‘nearly plastic’
behaviour observed in some ring-shear tests in the parametric limit of large m ≈ n.
What we mean by ‘nearly plastic’ here and in the remainder of this paper is that
shear stress τ in a till sample deforming in simple shear is only weakly dependent on
strain rate D, and is related approximately linearly to effective pressure pe (see also
Kamb 2001). Note that the general rheology (2.2) also includes the case of materials
which do not deform below a yield stress (such as an effective pressure-dependent
Herschel–Bulkley rheology, see e.g. Boulton & Hindmarsh 1987) if one does not insist
on strict inequalities in (2.3). We do not, however, pursue this further here.

A Cartesian coordinate system (x1, x2, x3) = (x, y, z) is used with the z-axis pointing
vertically upwards. Till is assumed to occupy the space between a fixed flat lower
surface z = −d and a mobile ice–sediment interface z = h(x, y, t) (figure 2). Provided
the flow of till is slow, conservation of momentum and mass require that on −d < z <h

∇ · σ − [(1 − φ)ρs + φρw]gk = 0, ∇ · u = 0, (2.5a, b)
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where ρs is the density of sediment grains, ρw the constant density of water, g

acceleration due to gravity and k the z-unit vector. Closing the till flow problem
requires that water pressure pw be known. We follow Hindmarsh and Fowler
in prescribing a hydrostatic water pressure distribution pw rather than modelling
drainage:

pw = pc − ρwgz, (2.6)

where pc is a constant which can be thought of as the drainage pressure in a pre-
existing subglacial drainage system (see e.g. Walder & Fowler 1994; Ng 1998). We
assume here for simplicity that the evolution of bed topography does not interfere
significantly with the drainage system, allowing pc to be prescribed; a more elaborate
theory would consider pc as a variable to be modelled separately.

Ice is modelled as a Newtonian medium with viscosity η and density ρ. As in
Hindmarsh and Fowler’s papers, we assume that the (still unknown) instability length
scale is short compared with the thickness H of the ice. Consequently, the ice flow
domain is extended to all z >h, and we have the usual Stokes equations

η∇2u − ∇p − ρgk = 0, ∇ · u = 0. (2.7)

At the base of the till, we impose no slip,

u = 0 on z = −d, (2.8)

while we assume that there is no differential motion at the ice–till interface so that
velocity, shear and normal stress are continuous:

[u]+− = 0, [τ · n − pn]+− = 0 on z = h. (2.9)

[ · ]+− denotes the difference between limiting values taken from above and below,
and τ · n is a contraction, τijnj in component notation. n is the unit normal to the
interface,

n =
[
1 + |∇hh|2

]−1/2
(k − ∇hh), ∇h = i

∂

∂x
+ j

∂

∂y
, (2.10)

and i and j are the unit vectors in the x- and y-directions, respectively. In (2.9),
deviatoric stress τ in the ice (z >h) is defined by τ = 2ηD as usual. The interface z = h

itself satisfies the kinematic boundary condition

∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
= w on z = h, (2.11)

or, expressed in terms of depth-integrated mass conservation,

∂h

∂t
+ ∇h · q = 0, q =

∫ h

−d

ui + v j dz. (2.12)

In addition, we restrict our domain to (x, y) lying in the square (0, a) × (0, a) and
apply periodic boundary conditions at the edges of the square. Initial conditions are
chosen such that the mean of h over the square is zero at t = 0, and hence remains at
zero for all t > 0 by the divergence theorem.

Boundary conditions for the ice flow at z = ∞ can be thought of as arising from
asymptotic matching between the ice flow problem above as the ‘inner problem’
(i.e. as a boundary layer near the bed) and an ‘outer problem’ which describes the
bulk flow of the ice sheet (Fowler 1981, 2000) (the horizontal lower boundary of the
till implies that the model is appropriate for a continental ice sheet rather than a
steep valley glacier). If the function F (τ, pe) is not highly nonlinear (specifically, if
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the domain of F is all τ � 0 and ∂F/∂τ is not large compared with F (τ, pe)/τ ),
then we can reasonably assume that the outer problem describes a flow in which
vertical shearing is dominant, as in the usual lubrication approximation for glacier
and ice-sheet flow (Fowler & Larson 1978; Morland & Johnson 1980). This shearing
flow imposes a given far-field shear stress τ̄ , which we take to be parallel to the
x-axis, on the boundary layer, while the pressure field far above the bed becomes
hydrostatic. Appropriate boundary conditions are then, as in Hindmarsh and Fowler,

η

(
∂u

∂z
+

∂w

∂x

)
→ τ̄ , η

(
∂v

∂z
+

∂w

∂y

)
→ 0, p − ρg(H − z) → 0 as z → ∞,

(2.13)

where z → ∞ is to be interpreted as z approaching a matching region from below.
In the case of a nearly plastic till, it is appropriate to prescribe a given leading-

order velocity on the boundary layer rather than a shear stress, as is discussed in § 7.
However, the changes to the model required in that case are minor and we persist
with the boundary conditions (2.13) for now.

3. Non-dimensionalization
The model presented in the previous section is a complicated nonlinear moving-

boundary problem, and little headway – apart from a brute-force linear stability
analysis applied to a basic shearing flow – can be expected without some form of
simplification. Hindmarsh (1998) and Fowler (2000, 2001) assume that the flow of
subglacial sediment can be described by a thin-film approximation, which they do
not, however, carry out consistently. In this section and the next, we demonstrate
how Hindmarsh and Fowler’s thin-film approximation arises from a perturbation
expansion in a small parameter measuring the ratio of till to ice viscosity. This has
the advantage of clarifying the assumptions behind the thin film approximation, and
of yielding additional simplifications which allow a tractable nonlinear model to be
constructed.

We begin by identifying relevant scales and non-dimensionalizing the model. The
scalings chosen in this section assume that the till rheology function F is not highly
nonlinear (say F given by (2.4) with exponents m and n which are not too large); the
rescaling necessary for the more complicated case of ‘nearly plastic’ rheologies will
be considered in § 7. Let [u] and [w] denote scales for horizontal and vertical velocity
components, respectively, while [t] is a time scale, [x] a horizontal length scale, [z]
a typical depth to which till is deforming significantly, [h] a scale for variations in
the elevation of the ice–till interface and [q] a typical till flux. [N] is a deviatoric
stress scale, and as the instability mechanism relies on the dependence of till flow on
effective pressure, we identify [N] with mean effective pressure at the bed:

[N] = ρgH − pc. (3.1)

Appropriate relations between the remaining scales are

[N] = η[w]/[x], (3.2)

[h]/[t] = [u][h]/[x] = [w] = [q]/[x], (3.3)

[q] = [u][z], [u] = F (τ̄ , [N])[z]. (3.4)

[z] = d. (3.5)

The last relation states that the entire thickness of the sediment layer deforms
significantly. This will need to be revisited when we consider highly nonlinear nearly
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plastic rheologies in § 7, as the nonlinearity tends to confine till flow to a narrow zone
near the ice–till interface. Note that the scale [h] for the amplitude of undulations
on the ice–till interface is the same as the deformation depth scale [z] on account of
(3.3) and (3.4) – and hence independently of the choice of [z] in (3.5) – while [t] is
the advective time scale [x]/[u].

These scales define the dimensionless parameters

ν =
[h]

[x]
, α =

(1 − φ)(ρs − ρw)g[z]

[N]
, β =

(ρw − ρ)g[z]

[N]
, γ =

[N]

τ̄
. (3.6)

ν is the aspect ratio of the bed, and the thin-film approximation developed in this
paper relies on ν � 1. If we define a measure of till viscosity by ηtill = [z]τ̄ /[u], then
ν =

√
(ηtill [N])/(ητ̄ ). For the case [N]/τ̄ ∼ 1 considered below, a small aspect ratio ν

therefore relies on till being much less viscous than ice. The remaining parameters may
be interpreted as follows: α and β measure the relative importance of gravitational
terms compared with mean interfacial effective pressure [N] in controlling pe, and
we assume that α and β are positive (i.e. that sediment is denser than water, which is
denser than ice). Lastly, γ measures the relative size of normal stress to shear stress
at the ice–till interface, which has implications for the flow of till: when [N] and τ̄

are comparable, γ = O(1) and till flows in simple shear as a Couette flow at leading
order, whereas when γ = O(ν−1), pressure gradients appear in the till-flow problem at
leading order. In the following, we only consider effective pressure and shear stress of
similar magnitude, so γ = O(1), as this is the case considered implicitly by Hindmarsh
(1998) and Fowler (2000, 2001). The scaling below can also be used to construct
a (more complicated) model for the case γ = O(ν−1) by analogy with the approach
employed in § 4.

Rough estimates for the parameters above can be obtained from values of [u], d ,
[N], η and τ̄ relevant to parts of ice sheets underlain by deformable beds (such the
West Antarctic ice streams, Alley & Bindschadler 2001). As till rheology is poorly
constrained, we estimate [u] directly based on ice stream velocities with [u] = 100 m
a−1 = 3 × 10−6 m s−1, and put τ̄ = 5 × 105 Pa, [N] = 105 Pa. The estimate for [N]
is much less than the hydrostatic ice pressure ρgH ≈ 107 Pa that one would expect
from a 1000 m thick ice sheet, the reason being that significant sediment deformation
generally requires high water pressures pc (cf. Engelhardt & Kamb 1997). We also put
η = 2 × 1013 Pa s (this can be estimated from Glen’s law, Paterson 1994), a deformable
sediment thickness of d = 5 m, ρs = 2700 kg m−3, ρw =1000 kgm−3, ρ =900 kg m−3 and
φ = 0.3, and obtain

[x] =
√

η[u][h]/[N] = 55 m, γ = 0.5, ν = 0.09, α = 1.2, β = 0.12,

and the assumption that ν � 1 is apparently justified, while α = O(1). Because the
densities of ice and water are similar, β ≈ 0.1α is typically small, but we retain it here.
Note also that the length scale [x] relevant to the model is much less than a typical
ice sheet thickness H ≈ 1000 m, as was assumed previously.

In the till layer −d < z <h, we reflect the assumption of a thin film flow by
non-dimensionalizing

h = [h]h�, (x, y, z) = [x](x�, y�, νZ�) (u, v, w) = [u](U�, V �, νW�),

q = [q]q�, τxz = τ̄ τ �
xz, τyz = τ̄ τ �

yz, τxx = ντ̄ τ �
xx,

τyy = ντ̄ τ �
yy, τzz = ντ̄ τ �

zz, τxy = ντ̄ τ �
xy, pe = [N]p�

e,

F (τ, pe) = ([u]/[z])F �(τ/τ̄ , pe/[pe]),

⎫⎪⎪⎬
⎪⎪⎭ (3.7)



234 C. Schoof

while in the ice z >h, we put

(x, y, z) = [x](x�, y�, z�), (u, v, w) = [u](u�, v�, w�) + η−1τ̄ [x]z� i, (3.8a, b)

p = ρg(D − z) + ν−1[N]p�. (3.8c)

Note that the same scaling for horizontal coordinates and velocity components is used
for the till and ice flows, whereas the scalings for vertical coordinates and velocity
components differ by a factor of ν. To avoid confusion, we will use the variables Z�

and (U�, V �, W�) only to describe vertical position and velocity in the till layer, while
z� and u� = (u�, v�, w�) will be reserved for the ice flow domain. Similarly, τ �

xz, τ �
xy

etc. will be used only to describe stress components in the till.

3.1. Scaled equations

We do not reproduce the full scaled versions of (2.1)–(2.13), which can easily be
obtained by substitution from (3.7) and (3.8). Instead we list the relevant scaled
equations with ‘small’ terms (of the order indicated on the right-hand side) omitted.
We also omit the asterisks on the dimensionless variables to simplify our notation.

The scaled momentum conservation equations for the till then take the usual form
for a thin-film flow:

∂τxz

∂Z
− νγ

∂pe

∂x
= O(ν2),

∂τyz

∂Z
− νγ

∂pe

∂y
= O(ν2),

∂pe

∂Z
+ α = O(νγ −1), (3.9)

on −1 < Z < h, where

F (τ, pe)
τxz

τ
=

∂U

∂Z
+ O(ν2), F (τ, pe)

τyz

τ
=

∂V

∂Z
+ O(ν2), τ 2 = τ 2

xz + τ 2
yz + O(ν2).

(3.10)

We will only require mass conservation for till in its depth-integrated form, which
reads

∂h

∂t
+ ∇h · q = 0, q =

∫ h

−1

U i + V j dZ. (3.11)

Field equations for the ice are of the usual Stokes flow form

∇2u − ∇p = 0, ∇ · u = 0 on z > 0. (3.12)

The no-slip conditions at the base of the till Z = −1 are unchanged

U = V = 0, (3.13)

while velocity and stress continuity at the ice–till interface z = νh, Z = h leads to

u = U, v = V, w = ν

(
∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y

)
, (3.14a−c)

∂u

∂z
− ∂w

∂x
− ν

∂h

∂y

(
∂u

∂y
− ∂v

∂x

)
− ν

∂h

∂x

(
2
∂u

∂x
− p

)
= νγ −1 (τxz − 1) + O(ν2, ν2γ −1),

(3.15)

∂v

∂z
− ∂w

∂y
− ν

∂h

∂x

(
∂v

∂x
− ∂u

∂y

)
− ν

∂h

∂y

(
2
∂v

∂y
− p

)
= νγ −1τyz + O(ν2, ν2γ −1), (3.16)

2
∂w

∂z
−p+ν

∂h

∂y

(
∂v

∂z
− ∂w

∂y

)
−ν

∂h

∂x

(
∂u

∂z
− ∂w

∂x

)
= −ν(pe−1−βh)+O(ν2γ −1), (3.17)
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and boundary conditions at z = ∞ are simply

∂u

∂z
+

∂w

∂x
→ 0,

∂v

∂z
+

∂w

∂y
→ 0, p → 0. (3.18)

4. Perturbation expansion
In the remainder of this paper, we exploit the smallness of the aspect ratio parameter

ν, and treat the case γ = O(1). Dependent variables are expanded as

u ∼ u(0) + νu(1) + O(ν2), p ∼ p(0) + νp(1) + O(ν2) etc. (4.1)

As pointed out above, we have scaled the vertical (z-) coordinate differently in the
ice and till flow domains in (3.7) and (3.8). The boundary conditions for the ice-flow
at z = νh are expanded in a Taylor series about z =0, allowing the ice-flow problem
to be considered on the simpler half-space domain z > 0, while no such expansion is
carried out in the coordinate Z.

4.1. Leading-order ice flow

The leading-order ice-flow problem obtained from (3.12), (3.14c), (3.15), (3.16) and
(3.18) takes the form of the homogeneous Stokes equations posed on the half-
space z > 0 with homogeneous Neumann-type boundary conditions in the horizontal
velocity components (u(0), v(0)) and homogeneous Dirichlet conditions in pressure p(0)

and vertical velocity w(0). Hence we obtain the trivial plug-flow solution(
u(0), v(0)

)
≡ Ū, w(0) ≡ p(0) ≡ 0, (4.2)

where the two-dimensional velocity vector Ū(t) is independent of position (but
otherwise unconstrained as yet). This is analogous to the sliding velocity in classical
hard-bed sliding with small bed slopes, where the leading-order velocity field in the
basal boundary layer is also a plug-flow (Fowler 1981). As we shall see shortly, the
plug-flow velocity Ū is determined through the till-flow problem by a simple force
balance argument. Importantly, asymptotic matching with the outer flow problem for
the glacier or ice sheet leads then to the imposition of a definite ‘sliding’ velocity Ū
at the lower boundary of the outer flow, as the shearing component in (3.8c) is small
compared with the u� term (cf. Fowler 1981, see also § 7). Physically, we may ascribe
the plug-flow nature of the ice flow to the high viscosity of ice compared with till
implicit in ν � 1.

4.2. Till flux and till surface velocity

The ice velocity Ū as well as the till flux q(0) are determined by the leading-order
till-deformation problem obtained from (3.9), (3.10) and (3.13). This leading-order
problem describes a simple shearing flow with no-slip boundary conditions on Z = −1.
For simplicity of notation, we define an interfacial effective pressure N and a two-
dimensional basal shear stress vector τ b as

N = p(0)
e

∣∣
Z=h(0), τ b =

(
τ (0)
xz i + τ (0)

yz j
)∣∣

Z=h(0) . (4.3)

If we temporarily omit the explicit dependence of U and V on x, y and t , then
integrating (3.9) and (3.10) at leading order gives

(
U (0)(Z), V (0)(Z)

)
=

τ b

τb

∫ Z

−1

F
(
τb, N + α

(
h(0) − Z′)) dZ′, (4.4)
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where τb = |τ b| is the usual Euclidean norm of τ b. Using (3.11) and (3.14), integration
of the till-flow problem then yields till flux q(0) and sliding velocity Ū as functions of
τ b, N and h(0):

Ū = ub

(
τb, N, h(0)

)
τ b/τb,

ub

(
τb, N, h(0)

)
:=

∫ h(0)

−1

F
(
τb, N +α

(
h(0) − Z

))
dZ =

∫ h(0)+1

0

F
(
τb, N + αξ

)
dξ,

⎫⎪⎬
⎪⎭ (4.5)

q(0) = qb

(
τb, N, h(0)

)
τ b/τb,

qb

(
τb, N, h(0)

)
:=

∫ h(0)

−1

∫ Z

−1

F
(
τb, N + α

(
h(0) − Z′)) dZ′ dZ

=

∫ h(0)+1

0

F
(
τb, N + αξ

)
ξ dξ,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.6)

where ξ = h(0) − Z, and we have made use of the identity
∫ c

b

∫ z

b
f (z′) dz′ dz =

∫ c

b
(c −

z)f (z) dz. With the constraints (2.3) on sediment rheology, we obtain the intuitively
obvious observations that till flux qb and surface velocity ub increase with till thickness
h(0) and shear stress τb, while they decrease with effective pressure N .

An alternative form of (4.5) and (4.6) will become useful later. As F (τ, pe)
is a monotonically increasing function of τ , we can invert the relation

Ū = ub(τb, N, h(0)) =
∫ 1+h(0)

0
F (τb, N +αξ ) dξ to find τb as a function of Ū = |Ū |, N and

h(0). Hence we can write τb = τ (Ū , N, h(0)), and (4.5) becomes

τ b = τ
(
Ū , N, h(0)

)
Ū

/
Ū . (4.7)

Consequently, shear stress at the ice–till interface is determined by sediment thickness,
effective pressure and the plug-flow velocity Ū , and is always parallel to the direction
of Ū (which is constant in space). Likewise, sediment flux takes the form

q(0) = Q
(
Ū , N, h(0)

)
Ū

/
Ū , (4.8)

where the function Q arises from substituting for τb in (4.6).
Ultimately, we wish to find the till flux q(0)(x, y, t) which corresponds to a given

bed topography h(0)(x, y, t) in order to solve the evolution equation

∂h(0)

∂t
+ ∇h · q(0) = 0. (4.9)

We must therefore determine the interfacial effective pressure N(x, y, t) and plug-flow
velocity Ū(t) which result from ice flow over that topography. Importantly, N does
not depend on h(0) and its derivatives locally, but must be found by solving for the
first-order correction to the ice-flow problem, as must Ū . As we shall see later, this
can be used to turn the problem into one of integro-differential type.

4.3. Spatial variations in basal normal stress and shear stress: the ice-flow
correction problem

From (3.12), (3.14c), (3.15), (3.16), (3.17) and (3.18) as well as (4.9) and the solution
for u(0) above, the O(ν) ice-flow problem satisfies the following equations:

∇2u(1) − ∇p(1) = 0, ∇ · u(1) = 0 on z > 0 (4.10a, b)

N = p(1) − 2
∂w(1)

∂z
+ βh(0) + 1 on z = 0, (4.11)
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τ b = i + γ

(
∂u(1)

∂z
+

∂w(1)

∂x
,
∂v(1)

∂z
+

∂w(1)

∂y
, 0

)
on z = 0, (4.12)

w(1) = Ū · ∇hh
(0) − ∇h · q(0) on z = 0 (4.13)

∂u(1)

∂z
+

∂w(1)

∂x
→ 0,

∂v(1)

∂z
+

∂w(1)

∂y
→ 0, p(1) → 0 as z → ∞, (4.14)

which may be seen as analogues of the equations decribing velocity and pressure
perturbations introduced into basal ice by flow over small-slope undeformable bed
topography in classical glacier sliding theory (Nye 1969; Kamb 1970; Fowler 1981).
Here, (4.10) are the usual Stokes equations, while (4.13) describes the effect of an
uneven evolving bed topography on the velocity field in the ice, which is crucial in
causing Hindmarsh and Fowler’s instability. Equations (4.12) and (4.11) show that τ b

and N arise naturally as boundary values of shear stress and normal stress at O(ν)
in the ice flow problem.

Using the fact that Ū(t) does not depend on position, we can simplify the problem
further. Integrating (4.10a) over the cuboid (0, a) × (0, a) × (0, R) and applying the
divergence theorem while passing to the limit R → ∞, we arrive at the obvious
conclusion that the mean of basal shear stress τ b over the ice–till interface must be
the dimensionless driving stress i (cf. Schoof 2002, p. 117), while the mean of scaled
effective pressure N is unity. Hence, using (4.7), we obtain the solvability conditions

Ū
a2Ū

∫ a

0

∫ a

0

τ (Ū , N, h(0)) dx dy = i,
1

a2

∫ a

0

∫ a

0

N dx dy = 1. (4.15a, b)

The obvious conclusion from (4.15a) is that the sliding velocity Ū is always parallel
to the direction of the driving stress (the x-direction). From (4.5) and (4.6) it then
follows that the y-components of shear stress τ b and hence of till flux q(0) also vanish,
so Ū = Ū i , τ b = τb i and q(0) = q (0) i . As we shall see in § 6, the role of the second
condition (4.15b) is to fix the mean sediment flux at the bed.

These results allow the ice-flow model to be simplified by replacing boundary
conditions (4.13) and (4.12) as well as the till evolution equation (4.9) by

w(1) = Ū
∂h(0)

∂x
− ∂q (0)

∂x
on z = 0, (4.16)

τb = 1 + γ

(
∂u(1)

∂z
+

∂w(1)

∂x

)
,

∂v(1)

∂z
+

∂w(1)

∂y
= 0 on z = 0 (4.17)

∂h(0)

∂t
+

∂q (0)

∂x
= 0, (4.18)

respectively, where τb = τ (Ū , N, h(0)), q = Q(Ū , N, h(0)), and Ū (t) is determined by
(4.15a): ∫ a

0

∫ a

0

τ
(
Ū , N, h(0)

)
− 1 dx dy = 0. (4.19)

Note that there are four scalar boundary conditions in (4.11), (4.16) and (4.17)
to be satisfied at the bed, when ordinarily we would expect only three for a three-
dimensional Stokes flow problem. The additional boundary condition arises because
N is not known a priori even if we consider a fixed t and h(0)(x, t) is given, but must
be found as part of the solution. Specifically, (4.16) and (4.17) are nonlinear boundary
conditions which link the vertical velocity component w(1) and shear stress term
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∂u(1)/∂z + ∂w(1)/∂x at the bed to the boundary value p(1) − 2∂w(1)/∂z of normal stress,
and hence to N , through the till deformation functions τ (Ū , N, h) and Q(Ū , N, h).
We can therefore think of the boundary-value problem consisting of (4.10), (4.11),
(4.14) and (4.16), (4.17) as determining N in terms of h(0), while (4.19) serves to
determine the spatially constant term Ū . Taken together, these allow N and Ū to be
found for a given bed topography h(0), and the evolution equation (4.18) to be solved
using q (0) =Q(Ū , N, h(0)). (Note that the Neumann boundary conditions on u(1) and
v(1) imply that the horizontal first-order velocity components are defined only up to
an additive constant, which does, however, not affect the determination of effective
pressure N described above. In order to obtain a unique first-order velocity field u(1)

it suffices to require in addition that, for instance, the mean of u(1) and v(1) over the
bed be zero.)

An important difference between the present model and classical glacier sliding
theory – apart from the fact that the bed is able to evolve – is that the force balance
relation (4.19) does not contain the ‘upstream component’ of normal stress at the bed,
which is usually taken to be the dominant term in force balance for an undeformable
bed (Nye 1969; Fowler 1981). In the context of the present model, this term, which
is associated with form drag, only becomes important when γ = O(ν−1), a case not
considered here.

Apart from the nonlinearity retained in our model through the functions Q and τ ,
the main difference between the reduced model constructed in this section and the
linearized models of Hindmarsh and Fowler lies in our recognition that the ice flow
is, at leading-order, a plug flow, while Hindmarsh and Fowler allow for leading-order
variations in ice velocity at the interface (which we expect to be small on account of
(3.14c), (3.15) and (3.16)). Ignoring these velocity variations simplifies the subsequent
analysis considerably.

5. Linear stability analysis
We examine the stability of the flat interface h(0) ≡ 0 in the model given by

equations (4.10), (4.13), (4.14) and (4.16)–(4.19). This will allow us to verify that
our systematically reduced model captures Hindmarsh’s (1998) and Fowler’s (2000,
2001) instability mechanism, and to shed further light on what causes the instability.

Consider small perturbations about a basic laminar shearing flow:

h(0) = εh′(x, y, t), u(1) = εu′(x, y, z, t), p(1) = εp′(x, y, z, t),

N = 1 + εN ′(x, y, t), Ū = Ū0 + ε2Ū ′(t),

where ε � 1 measures the size of the perturbation, and Ū0 =
∫ 1

0
F (1, 1 + αξ ) dξ is the

surface velocity of the till in the basic shearing-flow solution. The perturbation to Ū0

is of O(ε2) because Ū is independent of position while h′ and N ′ have zero spatial
mean (formally, this is justified by linearizing the constraint (4.19), cf. Schoof 2002,
p. 121). The relationships q =Q(Ū , N, h) and τb = τ (Ū , N, h) are linearized as

q = Q(Ū0, 1, 0)+ εQNN ′ + εQhh
′ +O(ε2), τb = 1+ ετNN ′ + ετhh

′ +O(ε2), (5.1)

where QN = ∂Q/∂N |(Ū0,1,0), Qh = ∂Q/∂h|(Ū0,1,0), and similarly for τN and τh.

By looking for Fourier mode solutions of the form h′ = ĥ exp(ikxx + ikyy + σ t), we
obtain an algebraic eigenvalue problem for σ very similar to that in Fowler (2000,
2001). The straightforward solution procedure is analogous to that used by Fowler
(see also Schoof 2002, §§ 5.3–5.4), and allows the dispersion relation for the linearized
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problem to be calculated as

σ = −ikx

Qh + βQN + 2ikxkQNŪ0

1 + 2ikxkQN

, (5.2)

where k =
√

k2
x + k2

y . The corresponding growth rate is

Re(σ ) =
2QN (Ū0 − Qs − βQN )k2

xk

1 + 4Q2
Nk2

xk
2

, (5.3)

and we see immediately that the bed is neutrally stable with Re(σ ) = 0 if QN = 0,
i.e. if till flux is independent of effective pressure. As mentioned earlier, the absence of
an upper free boundary to the ice flow domain implies that the instability mechanism
relies entirely on the dependence of till rheology, and hence of till flux, on effective
pressure (see also Fowler 2000, 2001).

Specifically, instability (Re(σ ) > 0) requires that

QN (Ū0 − Qh − βQN ) > 0. (5.4)

If this condition is satisfied, then the fastest growing Fourier mode has a wavevector
of the form (kx, ky)max = (±[

√
3/(2|QN |)]1/2, 0), which has zero transverse component,

corresponding to infinite transverse wavelength. This suggests that if the instability
occurs, then it causes transverse roll waves at the ice–till interface rather than three-
dimensional shapes like drumlins. Physically, this may be attributed to there being
no transverse component of till flux at leading order, which in turn results from the
plug-flow nature of the ice flow and hence from the high viscosity of ice compared
with till. In addition, (5.3) indicates that the linearized problem is well-posed, with
Re(σ ) ∼ k−1 as k → ∞.

Before we investigate the instability criterion (5.4) further, we point out that when
restricted to the two-dimensional case ky = 0, the growth rate calculated in (5.3) can
be shown to be a dimensionless version of the growth rate in equation (5.2) in Fowler
(2000), and our reduced model therefore captures the same instability mechanism as
Fowler’s model.

5.1. The instability criterion

For a better insight into the physical instability mechanism, we consider under what
conditions on the function F (τ, pe) and the parameter β the instability criterion
(5.4) is satisfied. Using Q(Ū , N, h) = qb(τb, N, h) where Ū = ub(τb, N, h), we can relate
derivatives of Q(Ū , N, h) to derivatives of ub(τb, N, h) and qb(τb, N, h) by using the
chain rule:

∂Q

∂h
=

∂qb

∂h
− ∂qb

∂τb

∂ub

∂h

/
∂ub

∂τb

,
∂Q

∂N
=

∂qb

∂N
− ∂qb

∂τb

∂ub

∂N

/
∂ub

∂τb

. (5.5a, b)

As discussed in § 4.2, till flux qb(τb, N, h) and till velocity ub(τb, N, h) increase with τb

and h while they decrease with N . Therefore the second term on the right-hand side
of (5.5a) is negative and ∂Q/∂h < ∂qb/∂h. The basic solution of a simple shearing
flow corresponds to τb = 1, N =1 and h = 0, and for these values, ∂qb/∂h= F (1, 1+α)
follows from the definition of till flux in (4.6). Hence Qh < F (1, 1+α) and

Ū0 − Qh >

∫ 1

0

F (1, 1 + αξ ) dξ − F (1, 1 + α) > 0, (5.6)
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because α > 0 and F is strictly decreasing in its second argument. Since β > 0, the
instability criterion (5.4) is therefore satisfied if and only if

QN > 0, β <
Ū0 − Qh

QN

. (5.7)

Assuming for the moment that the difference between the densities ρw of water and
ρ of ice is small enough for β =(ρw − ρ)g[z]/[N] to be negligibly small, we see that
the instability essentially requires QN > 0. As indicated in § 1, till flux must increase
with effective pressure when the sliding velocity is held constant.

The instability therefore functions as indicated in § 1: the flow of ice over a bump
on the bed causes higher compressive normal stresses, and hence higher interfacial
effective pressures N , on the upstream side of the bump than on the downstream
side. Meanwhile, the plug flow nature of the ice flow at leading order implies that
the surface velocity of the till remains approximately constant on both sides of the
bump. If till rheology is such that till flux increases at constant till surface velocity
when interfacial effective pressure is increased, then the higher normal stresses on the
upstream side than on the downstream side of a bed bump cause a greater till flux
into the bump than out of it, and the bump grows.

Intuitively, one would associate an increase in effective pressure not with an increase
in till flux – which the instability demands – but with a decrease, and this is certainly
true at constant shear stress (∂qb/∂N < 0 as discussed above). Till flux can increase
with effective pressure only because the stiffening of till at increased effective pressure
also requires an increased shear stress to keep till surface velocity constant – this
is expressed by the second (positive) term on the right-hand side of (5.5b), while
the direct effect of increased effective pressure on till flux is represented by the first
(negative) term. Which of these two effects dominates depends on the particular
rheological model for till, i.e. on the function F .

Using (5.5b) and defining Fτ = ∂F/∂τ , Fpe
= ∂F/∂pe, we find

QN =

∫ 1

0

ξFpe
(1, 1 + αξ ) dξ −

∫ 1

0

ξFτ (1, 1 + αξ ) dξ

∫ 1

0

Fpe
(1, 1 + αξ ) dξ∫ 1

0

Fτ (1, 1 + αξ ) dξ

, (5.8)

which provides a practical means of testing whether QN > 0 for a given rheology, and
hence whether instability occurs at sufficiently small β . Many rheologies, including
the power-law (2.4) and the exponential rheology used by Fowler (2000) are of the
form

F (τ, pe) = f (τ b/pe), b > 0 constant, f ′(ζ ) > 0 when ζ > 0. (5.9)

For rheologies of this type, (5.8) takes the form

QN =

∫ 1

0

ξ 2s(ξ ) dξ

∫ 1

0

s(ξ ) dξ −
(∫ 1

0

ξs(ξ ) dξ

)2

∫ 1

0

(1 + αξ )s(ξ ) dξ

(5.10)

where s(ξ ) = (1+αξ )−2f ′(1/[1+αξ ]) > 0. It is straightforward to see then that QN > 0
follows by the Cauchy–Schwarz inequality applied to the product ξ × 1 with weight
function s(ξ ). More explicitly, the denominator in (5.10) is clearly positive, while the
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numerator can be written as:∫ 1

0

ξ 2s(ξ ) dξ

∫ 1

0

s(ξ ) dξ −
(∫ 1

0

ξs(ξ ) dξ

)2

=

∫ 1

0

[(∫ 1

0

s(ξ ′) dξ ′ξ −
∫ 1

0

ξ ′s(ξ ′) dξ ′
)2

s(ξ )

]
dξ

∫ 1

0

s(ξ ′′) dξ ′′
.

Clearly, this quantity is positive since s(ξ ) � 0 for 0 � ξ � 1. Consequently, for
rheologies of the type (5.9), we generally expect instability, at least at small β .
Importantly, this result holds regardless of the values of the exponents m and n in
(2.4) and therefore applies to the nearly plastic case of large m ≈ n (see also § 7).

We do not investigate the role of β in controlling bed stability in detail here,
although the instability criterion (5.7) clearly indicates that instability requires β to
be below a critical value (Ū0 − Qh)/QN . This is not considered in more detail here
because critical values of β for the power-law (2.4) have been calculated Schoof (2002,
§ 5.5.2), where it was found that in all physically realistic cases, β lies below the critical
value and instability occurs.

6. A nonlinear model
Having established that the instability mechanism is feasible for a large class of

rheologies, our next task is to study the nonlinear evolution of the ice–till interface. As
the fastest growing wavevector has zero transverse component, we restrict ourselves
to the two-dimensional case where v ≡ 0 and all variables are independent of the
transverse coordinate y. We will also omit the superscripts (0) on h and q . Then the
model in § 4.3 takes the form

∇2u − ∇p = 0, ∇ · u = 0 on z > 0, 0 < x < a, (6.1a, b)

∂u

∂z
+

∂w

∂x
→ 0, p → 0 as z → ∞. (6.2)

w = Ū
∂h

∂x
− ∂q

∂x
, τb = 1+γ

(
∂u

∂z
+

∂w

∂x

)
, N = 1+βh+p−2

∂w

∂z
on z = 0,

(6.3a–c)

τb = τ (Ū , N, h), q = Q(Ū , N, h), (6.4)

∂h

∂t
+

∂q

∂x
= 0, (6.5)

with periodic boundary conditons at x = 0, a. The particular forms chosen for
τ (Ū , N, h) amd Q(Ū , N, h) are those which arise from the power-law (2.4), which
reads F (τ, pe) = τmp−n

e in dimensionless form. Integrating (4.5) and (4.6) explicitly,
we obtain for n �= 1, 2:

ub(τb, N, h) =
τm

α(n − 1)Nn−1

[
1 −

(
N

N + α(1 + h)

)n−1 ]
, (6.6)
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qb(τb, N, h) =
τm

α2(n − 1)(n − 2)Nn−2

[
1 − N + (n − 1)α(1 + h)

N

(
N

N + α(1 + h)

)n−1 ]
,

(6.7)
which can be inverted to give

τ (Ū , N, h) = Ū 1/mN (n−1)/m[α(n − 1)]1/m

[
1 −

(
N

N + α(1 + h)

)n−1
]−1/m

, (6.8)

Q(Ū , N, h) =
ŪN

α(n − 2)

− Ū (n − 1)(1 + h)

n − 2

(
N

N + α(1 + h)

)n−1 [
1 −

(
N

N + α(1 + h)

)n−1 ]−1

. (6.9)

As a first step, we reduce the nonlinear boundary-value problem (6.1)–(6.4) to an
integral equation over the lower boundary of the ice flow. The simplest way of doing
so is to exploit the periodicity in x of the domain and introduce the discrete Fourier
transform of a generic function f (x, z, t) with period a as

f̂ n(z, t) =
1

a

∫ a

0

f (x, z, t) exp(−iknx) dx, (6.10)

where n is an integer and kn = 2πn/a. In order to solve (6.1a, b), we introduce a stream-
function ψ such that u = (∂ψ/∂z, −∂ψ/∂x), and (6.1b) is satisfied automatically.
Solutions for ψ and p satisfying (6.2) can be written in the form

ψ̂n = (Anz + Bn) exp(−|kn|z), p̂n = −i2knA exp(−|kn|z), (6.11)

where An and Bn are independent of z (but depend on t and n). Implementation of
the boundary conditions (6.3a–c) for n �= 0 then yields the relations

−iknBn = ikn(Ū ĥn − q̂n), N̂n = βĥn − 2ikn|kn|Bn, (6.12)

or equivalently

N̂n = βĥn + 2i|kn|kn(Ū ĥn − q̂n), n �= 0, (6.13)

with N̂0 = 1. Note that the Fourier components of shear stress τb do not enter into
this expression. Re-arranging, we are led to

q̂n − Ū ĥn + β
i

2|kn|kn

ĥn − i

2|kn|kn

N̂n = 0. (6.14)

Next, we invert the relationship q = Q(Ū , N, h) to give N = Ñ(Ū , q, h). This inversion
is unique for q in the range of Q(Ū , · , h) because Q(Ū , · , h) in (6.9) is mononically
increasing in N (this can be shown by analogy with the derivation of (5.10)); however,
in general, the inversion is possible only numerically. A nonlinear integral equation
of Hammerstein type (Rall 1969) for q is then obtained by taking the inverse of the
discrete Fourier transform and applying the convolution theorem:

q(x, t) − q̄(t) − Ū (t)h(x, t) + β

∫ a

0

K(x − x ′)h(x ′, t) dx ′ −
∫ a

0

K(x − x ′)N(x ′, t) dx ′ = 0,

(6.15)
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where N(x ′, t) = Ñ(Ū (t), q(x ′, t), h(x ′, t)), while q̄(t) = q̂0(t) = a−1
∫ a

0
q(x, t) dx is the

mean value of till flux, and the kernel K is given by

K(x) =

∞∑
n=−∞, n�=0

i exp(iknx)

2|kn|kna
. (6.16)

For an alternative, more elegant derivation of (6.15) using complex variables, see
Schoof (2002). It remains to fix the two spatially constant terms Ū (t) and q̄(t). One
constraint is provided by the horizontal force balance relation (4.19), which we cast
as ∫ a

0

τ̃ (Ū (t), q(x, t), h(x, t)) − 1 dx = 0, (6.17)

where τ̃ (Ū , q, h) is obtained from τ (Ū , N, h) by substituting N = Ñ(Ū , q, h). Another
constraint arises from a two-dimensional equivalent of the vertical force balance
condition (4.15b): ∫ a

0

Ñ(Ū (t), q(x, t), h(x, t)) − 1 dx = 0. (6.18)

Given bed topography h(x, t) at fixed t , equations (6.15)–(6.18) are sufficient to
calculate flux and sliding velocity, for which Schoof (2002) presents a numerical
scheme based on a Newton–Kantorovic̆ iteration. Meanwhile, the evolution of the
ice–till interface is governed by

∂h

∂t
+

∂q

∂x
= 0. (6.19)

Here we use a Fourier collocation scheme with a fully implicit time step (e.g. Trefethen
2000) to solve (6.15)–(6.19) with Ñ and τ̃ defined by the power law (2.4).

A typical result is displayed in figure 3. As expected, small perturbations on the bed
grow, but importantly the growth is not bounded. In fact, the solution procedure was
terminated when N reached zero on the downstream side of the largest bed bump
(figure 4). Zero interfacial effective pressure physically corresponds to compressive
normal stress at the interface equalling water pressure; this is the point at which
ice loses contact with the bed and a water-filled cavity forms in the lee of the bed
bump, again a familiar phenomenon from glaciers sliding over undeformable beds
(e.g. Fowler 1986; Schoof 2005). This outcome was encountered in all simulations
carried out using a wide range of parameters α, β , m and n for which instability was
predicted. It therefore appears that the nonlinearity present in the functions Ñ and τ̃

(or Q and τ ) is insufficient to cause bounded growth before the onset of cavitation.
This conjecture will be supported further in the next section, where we show that
taking the plastic limit m ≈ n � 1 in the power law rheology (2.4) leads to an effective
linearization of the model, and that unbounded growth must then be expected at
least before the onset of cavitation.

These results suggest that an additional nonlinearity must be introduced into the
model if bounded growth is to occur. In a separate paper, we show that a modification
of the present model which takes account of cavitation allows for travelling-wave
solutions, suggesting that the nonlinearity introduced by cavitation is sufficient to
quench the instability.
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Figure 3. Nonlinear evolution of the ice–till interface with m= n= 5, α = 1, β = 0.1 and a = 10
(recall that m and n are rheological parameters, while α measures the hydrostatic increase
in effective pressure over the thickness of the sediment layer compared with mean interfacial
effective pressure, while β depends on the difference between water and ice viscosities). (a)
Solutions for s(x, t) at unit time intervals are plotted with a vertical stagger for ease of viewing.
The final bed shape at cavitation corresponds to t = 18.3. (b) The evolution of sliding velocity
Ū (t) with time. The ice velocity increases as bed bumps grow. This is because sliding velocity
is determined by till deformation through (4.19) rather than by drag due to bed bumps acting
as obstacles to flow (which appears as a higher order term in force balance).
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Figure 4. (a) Bed elevation s (solid line) and flux q (dot-dashed line) at the final time step
of the simulation shown in figure 3. Clearly, q is largest on the upstream sides of bed bumps,
showing that the bumps are still growing. (b) Effective pressure N (solid line) and shear stress
τb (dot-dashed line) for the bed shown in (a). Both reach zero at x = 6.3, in the lee of the
largest bed bump (ice flow is from left to right). When effective pressure reaches zero, ice lifts
off the bed and a water-filled cavity forms.
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7. ‘Nearly plastic’ rheologies
In this section, we consider briefly what happens in the limit of large m ≈ n in the

model (6.1)–(6.8). The motivation for considering this limit is that it conforms most
closely to what is observed in laboratory tests of till shearing. Before we proceed, we
should point out that the model (6.1)–(6.8) itself was based on the asymptotic limit
ν � 1. If we consider the limit m ≈ n � 1 in the confines of this model, rather than
returning to the full problem (2.1)–(2.13), we are restricting ourselves to a case in which
limits in ν are taken first (since the relevant limits in ν and n may not commute). Tech-
nically (though we will not explore this further here), this implies that ν � 1/

√
n � 1.

Consider then (6.9), and suppose that N remains uniformly bounded, while 1+h > 0
everywhere uniformly, so there is no sediment pinch-out. Then N/(N + α(1 + h)) �
M < 1 for some fixed positive M . Then Q(Ū , N, h) behaves as (see also Schoof 2002,
chap. 6)

Q(Ū , N, h) ∼ ŪN

α(n − 2)
+ O(nMn), (7.1)

and the correction tends to zero as n → ∞ faster than the first term does (as
nMn = o(n−1) for M < 1 and n → ∞). Hence, for large n, we can approximate
Q ∼ ŪN/(α(n−2)) and Q is linear in N . Unbounded growth before cavitaton is
now unsurprising, as the only nonlinearity present resides in the fact that Q also
depends on the (spatially constant) velocity Ū , which is determined by the shear stress
function τ (Ū , N, h) through (6.17).

For the special case of m = n − 1, this argument can be taken a step further: if we
consider (6.8), we see similarly that

τ (Ū , N, h) ∼ [α(n − 1)Ū ]1/mN (n−1)/m(1 − O(Mn−1))−1/m, (7.2)

and hence τ ∼ [α(n−1)Ū ]1/mN (n−1)/m. For m = n−1, this gives τ ∼ [αmŪ ]1/mN , and
(6.17) is simply

[αmŪ (t)]1/m 1

a

∫ a

0

N(x, t) dx = 1, (7.3)

since Ū is independent of position. From (6.15), we know that a−1
∫ a

0
N(x, t) dx = 1,

and Ū is in fact constant in time as well as space:

Ū =
1

αm
, (7.4)

and the model is fully linear: we have (6.1)–(6.5) with τ and Q given by

τ = [αmŪ ]−1/mN (n−1)/m = N, Q =
ŪN

α(n − 2)
=

N

α2(n − 1)(n − 1)
, (7.5)

and Ū given by (7.4). The linearity of this model implies that, if growth occurs, it
must be unbounded – until the onset of cavitation.

More generally, we can argue that for large m ≈ n, the outer flow problem which
describes the ice sheet as a whole is unlikely to be a classical lubrication flow and
hence that the far-field boundary conditions (2.13) ought to be revisited. Suppose
that the outer flow of the ice sheet is not a lubrication flow but, for instance, behaves
similarly to a viscous membrane, as is the case for ice streams and ice shelves (see e.g.
MacAyeal 1989; Schoof 2006a). In that case, neither shear stress nor sliding velocity
at the base of the outer flow (corresponding to the matching region with the inner
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flow considered here) can necessarily be prescribed independently, but are related
through the solution of the outer flow.

Clearly, the far-field shear stress τ̄ i in the boundary layer can be identified with
the basal shear stress in the outer flow, where we have assumed in the set-up of the
problem that the x-axis is, at least on the inner length scale [x], aligned with the
direction of basal shear stess in the outer flow. The only change from the original
set-up of the problem is now that we may not necessarily prescribe τ̄ . Meanwhile,
from (3.8a) we find that u = [u](u�+νγ −1z� i) = [u](Ū i+νu(1)+νγ −1z� i + O(ν2)) in
dimensional terms, where we have reintroduced the asterisk on u� to distinguish it
from the dimensional velocity field u. Hence, if the matching region between inner
and outer flow is identified with 1 � z� � γ ν−1, then it is clear that us i = [u]Ū i is the
dimensional basal velocity in the outer flow (see also Fowler 1981).

For the outer problem, the boundary-layer problem must specify a friction law, or
specifically, a relationship between us , τ̄ and mean effective pressure [N] = ρgH − pc

(see also Schoof 2005). This is precisely what (6.17) provides. For m ≈ n � 1, (7.2)
can be used to cast (6.17) in dimensional terms – by redimensionalising all quantities
involved – as

[K(n − 1)(1 − φ)(ρs − ρw)us]
1/m (ρgH − pc)

(n−1)/m

(
1

a

∫ a

0

N (n−1)/m dx

)
= τ̄ , (7.6)

where ρgH − pc = [N] is mean effective pressure, and K is the constant in (2.4).
Approximating

1

a

∫ a

0

N (n−1)/m dx ≈ 1

a

∫ a

0

N dx = 1 (7.7)

for m ≈ n � 1 and using (6.15), we have

τ̄ =

[
(n − 1)K

(1 − φ)(ρs − ρw)g

ρgH − pc

us

]1/m

(ρgH − pc)
n/m. (7.8)

As m � 1 and n/m ≈ 1, this states that dimensional far-field shear stress is only
weakly dependent on the sliding velocity us , and approximately linear in mean effective
pressure ρgH − pc. In other words, we have a regularized Coulomb friction law.

The mechanics of ice-sheet flow subject to a Coulomb friciton law have been
explored in Schoof (2004, 2006a , b). Here, it suffices to note that the relevant solution
procedure calculates velocity us at the base of the outer flow based on the basal yield
stress distribution (which may, in those regions where sliding occurs, be identified
with the basal shear stress). Thus, for a highly nonlinear till rheology (2.4) with
large m ≈ n, it makes more sense to impose the sliding velocity us = [u]Ū than the
far-field shear stress τ̄ (as the latter is effectively controlled by mean effective pressure
ρgH − pc). By an appropriate choice of scaling, we can then set Ū = 1. Equation (7.1)
still provides till flux q as q = ŪN/[α(n−2)] = N/[α(n−2)], while shear stress τb can
be calculated from (7.2) as τb =N , where with Ū = 1 fixed we can now legitimately
approximate [α(n−1)Ū ]1/m ∼ 1. The appropriate model in two dimensions is then

∇2u − ∇p = 0, ∇ · u = 0 on z > 0, (7.9)

∂u

∂z
+

∂w

∂x
→ 0, p → 0 as y → 0, (7.10)

w =
∂h

∂x
− ∂q

∂x
, τb = 1+ γ

(
∂u

∂z
+

∂w

∂x

)
, N = 1+βh+p − 2

∂w

∂x
, on z = 0,

(7.11a–c)
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∂h

∂t
+

∂q

∂x
= 0, (7.12)

q =
N

α(n − 2)
, τb = N. (7.13a, b)

As a final point, we may note that the flux in (7.13) is small for large n. An O(1) flux
can be recovered under the rescaling

q�� = αnq, h�� = αnh, x�� =
√

αnx, t�� =
√

αnt, u�� =
√

αnu.

(7.14)

A more in-depth physical interpretation of this rescaling may be found in Schoof
(2002, chap. 6). Here we note only that (7.13) suggests that, for large n, till deformation
is restricted to a thin layer close to the ice–till interface, of thickness ∼ 1/(αn) in
units of [z] as defined in § 3; hence, identifying the vertical scale [z] with d is
inappropriate for highly nonlinear rheologies. The rescaling defines a new scale for the
size of bed bumps, equal to the effective thickness of deforming sediment:

[z]�� = [h]�� =
d

αn
=

[N]

n(1 − φ)(ρs − ρw)g
, (7.15)

which is independent of available sediment thickness and depends only on effective
pressure and material parameters. Correspondingly, the relevant wavelength scale is, in
terms of velocity and material parameters

[x]�� =
[x]√
nα

=

√
η[u]

n(1 − φ)(ρs − ρw)g
. (7.16)

Dropping the asterisks on the double-starred dimensionless variables, the model
(7.9)–(7.13) then remains unchanged under this rescaling except that (7.11c) and
(7.13a) may be rewritten at leading order in (αn)−1 as

N = 1 + p − 2
∂w

∂x
, q = N. (7.17)

The resulting model is clearly linear, and the flat-bed solution h ≡ 0 can easily be
shown to be unstable: in the notation of § 5, we have QN = 1 > 0 and β = 0, and the
model admits Fourier mode solutions of the form h(x, t) = Re(exp(ikx + σ t)), with
σ = 2|k|3/(1+2ik|k|). The linearity moreover allows the case of cavitation to be treated
more easily, as we will explore in a separate paper.

8. Discussion
In this paper, we have presented a detailed study of an instability in coupled ice–

sediment flow, modelled as the slow flow of a Newtonian medium over a thin layer of
viscous material with a pressure-dependent viscosity. As was shown in § 5, the basic
mechanism relies on a sediment flux which increases (as a result of pressure-dependent
viscosity) when compressive normal stress at the ice–sediment interface is raised while
the horizontal component of velocity of the interface remains constant. Under these
circumstances, the higher compressive normal stress typically exerted by moving ice
on the upstream side of a bed bump compared with the downstream side corresponds
to a higher till flux going into the bed bump than out of it, and the bump grows. It was
shown that this behaviour is expected for a class of simple effective-pressure dependent
viscous rheologies, including highly nonlinear ‘nearly plastic’ ones. Dimensionally, we
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see from (7.15) and (7.16) that the expected size of bed bumps increases with effective
pressure – where we require the additional caveat that at very high effective pressures,
the sediment may not deform at all, an effect which can be represented through
incorporation of a yield stress in the model (e.g. Boulton & Hindmarsh 1987) – while
the instability length scale increases as the square root of velocity.

With regard to the glaciological debate about till rheology, our results suggest the
following: Hindmarsh and Fowler’s instability does not so much depend on a viscous
rheology for till as on the ability to parameterize till flux in terms of effective pressure
and till surface velocity such that till flux increases with effective pressure at constant
till surface velocity. It is conceivable that the latter is possible even if shear stress at
the surface of the till must always attain a prescribed value, as would be expected for
a plastic till.

The growth of instability was also shown to be unbounded until the onset of cavity
formation, which occurs when compressive normal stress in the lee of a bump on
the ice–sediment interface drops to the local porefluid pressure. Preliminary results
to be reported in separate paper (see also Schoof 2002, chap. 6) indicate that cavity
formation allows at least for the formation of travelling waves, and may therefore be
sufficient to stop the growth of the instability.

The intention of the original proponents of the instability mechanism had been to
describe the formation of a type of subglacial landforms known as drumlins. For a
number of reasons, our results do not support this notion. First, our stability analysis
has indicated that the fastest growing Fourier mode corresponds to roll waves with
infinite transverse wavelengths, and there is no obvious mechanism in the model
for symmetry breaking which could allow for the formation of three-dimensional
bedforms such as drumlins (see figure 1), though the model could conceivably account
for ridges or ‘Rogen moraines’ transverse to the ice flow direction (e.g. Aario 1987).
Furthermore, geological evidence shows that the cores of drumlins often consist of
undeformed stratified sediment (Alden 1905; Sharpe 1987), which sometimes shows
evidence of having been deposited in a non-glacial environment (Schaeffer 1969;
Goldthwait 1974). By contrast, the instabilities predicted by our model appear to be
advected downstream and, at least at cavitation, the amplitude of bed undulations
scales with the thickness [z] of the deforming layer. It is therefore difficult to conceive
of the bed undulations predicted by our model as preserving sedimentary structures
in a subglacial till layer, as this would require a thin deforming layer atop an
essentially stationary bedform of much larger amplitude than the deforming layer. A
third consideration is the height of drumlins. Typical estimates of the depth to which
subglacial sediments deform range from a few centimetres (Engelhardt & Kamb 1998)
to around a metre (Boulton & Hindmarsh 1987). If the amplitude scale for evolved
bed undulations is the same as the scale for the thickness of till which is effectively
deforming (and we are not able to demonstrate this conclusively here as we cannot
follow the evolution of the bed beyond cavitation, but see also Schoof 2002, chap. 6),
then our model seems unable to predict bed bumps more than a few metres high.
This is hardly adequate to explain the formation of drumlins, which are often tens of
metres high.

The fact that the model predicts the spontaneous formation of cavities on
deformable glacier beds is possibly of much greater practical interest than the tenuous
link between the model and the origin of drumlins. The formation of a network of
subglacial cavities which are capable of storing large quantites of slow-flowing water
has been linked with the surging behaviour of some temperate glaciers, in particular
the well-studied Variegated Glacier in Alaska (Fowler 1987; Kamb 1987). However,
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models which attempt to describe the formation of subglacial cavities generally rely
on the assumption of an undeformable bed (Fowler 1986; Kamb 1987; Schoof 2005),
whereas it is known that the Variegated Glacier is underlain by till (Harrison, Kamb
& Engelhardt 1986). Our model provides a possible theoretical explanation for the
existence of a linked cavity network at the base of a soft-bedded glacier. As our work
in § § 5 and 7 shows, this conclusion seems to be robust when considering highly non-
linear nearly plastic rheologies, at least when these are of power-law type.

This work was supported by the US National Science Foundation under grant
no. DMS-03227943, and by an EPSRC doctoral studentship at the Mathematical
Institute, Oxford University. I should like to thank the editor, Howard Stone, as well
as Richard Hindmarsh and two anonymous referees for their thorough scrutiny.

Appendix. The thermodynamic basis for effective-pressure-dependent viscosity
Dell’Isola & Hutter (1998) construct a thermodynamics-based mixture theory for

till deformation in which porosity φ (or 1 − ν in their notation, where ν is the
solid volume fraction) controls sediment viscosity; in addition, they use only a single
pressure variable, denoted below by P (to avoid confusion with our p). At constant
temperature, stress Ts supported by the till is written as (dell’s Isola & Hutter’s
equation (2.12)):

Ts = −(1 − φ)(βs(φ) + P )I + ts (A 1)

where the thermodynamic pressure βs is determined as a function of φ by the
Helmholtz free energy of the till-water mixture, I is the identity tensor (whose
components are given by the Kronecker delta), and ts is a deviatoric stress defined
implicitly by

D − 1
3
Tr(D)I = A(φ, ts)ts, (A 2)

where A is fluidity, ts the second invariant of ts , and Tr(D) denotes the trace of the
sediment strain rate tensor D. Under the assumption made in the present paper that
porefluid does not support significant shear stresses, the stress supported by the fluid
may be written as

Tf = −φP I, (A 3)

which amounts to setting dell’Isola & Hutter’s fluid viscosities µf and λf to zero. For
slow flow, momentum conservation in dell’Isola & Hutter’s theory becomes

∇ · Ts − (1 − φ)ρsgk + m = 0, ∇ · Tf − φρwgk − m = 0, (A.4a, b)

where the non-equilibrium part of the interaction term m describes a Darcy force:

m = − {P + (1 − ρs)/[(1 − φ)ρs + φρw])βs} ∇φ + qw/κ, (A.5)

where κ(φ) is a permeability and qw is water flux relative to the till matrix (porosity
multiplied by water velocity relative to the matrix velocity u).

To arrive at an effective-pressure based description, define total pressure p and
liquid pressure pw by

p = (1 − φ)βs(φ) + P, pw = P. (A.6)

If we define the usual effective pressure as pe = p − pw , we find

pe = (1 − φ)βs(φ)
.
= f (φ). (A.7)
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If f (φ) thus defined is monotonically decreasing, then φ can be written as a function
of pe, and we can legitimately express till viscosity as a function of pe in (A 2). If,
in addition, the modulus of the first derivative f ′ of f is sufficiently large, then it
is clear that for a limited range of values of p and pw , and hence of p, variations
in porosity φ about some mean value φ0 will be small. Indeed, approximating pe −
pe,0 = f (φ) − f (φ0) ≈ f ′(φ0)(φ−φ0) where f (φ0) = pe,0 is a reference effective pressure,
it is clear that − 1/f ′(φ0) plays the role of a compressibility, which is small when
f ′ is large. This allows us to approximate the till matrix as incompressible, hence
(2.5b) holds and Tr(D) = 0 in (A 2). Nonetheless, it is conceivable that small changes
in φ still lead to large changes in sediment viscosity through a sensitive dependence
of A(φ, ts) on φ, and a dependence of viscosity on effective pressure is retained.
On the other hand, we can approximate porosity gradients to zero, notably in
(A.5). Equation (A 4b) thus gives an ordinary Darcy’s law for water flux:

qw ≈ −φ0κ(φ0)∇pw − φ0ρwgk. (A.8)

For a fixed water flux and sufficiently large permeability, we find that pw changes
hydrostatically, as in Fowler and Hindmarsh’s model (equation (2.6) in this paper).
Similarly, adding (A 4a) and (A 4b) yields

−∇p + ∇ · ts − [(1 − φ0)ρs + φ0ρw]gk = 0, (A.9)

which we may identify with (2.5a) if we put F (τ, pe) = A(φ0 + [pe − pe,0]/f
′(φ0), τ ))τ ,

remembering that Tr(ts) ≈ 0 owing to the approximate incompressibility of the till
matrix.

It remains to point out that our prescription of stress continuity at the ice–till
interface differs from that of dell’Isola & Hutter. Specifically, by imposing a stress
on the ice side of the interface, dell’Isola & Hutter’s approach (postulate 3.1 of
their paper) yields both fluid and solid stresses on the till side. Hence, when the till
flows in simple shear, effective pressure at the interface is prescribed in dell’Isola &
Hutter’s model by normal stress and is not affected by the presence of a drainage
system. In our approach, fluid stress is prescribed by other means – specifically by a
drainage system – the difference between the models presumably being accounted for
by different constitutive relations for these interface stresses.
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